
Proximity Search in Databases

Roy Goldman, Narayanan Shivakumar,

Suresh Venkatasubramanian, Hector Garcia-Molina

Stanford University

froyg, shiva, suresh, hectorg@cs.stanford.edu

Abstract

An information retrieval (IR) engine can rank documents based on textual proximity of keywords
within each document. In this paper we apply this notion to search across an entire database

for objects that are \near" other relevant objects. Proximity search enables simple \focusing"
queries based on general relationships among objects, helpful for interactive query sessions. We
conceptually model the database as a graph, with data in vertices (objects) and relationships

indicated by edges. Proximity is de�ned based on shortest paths between objects, and we
introduce several proximity scoring functions. We have implemented a prototype search engine
that uses this model to enable keyword searches over databases, and we have found it very

e�ective for quickly �nding relevant information. Computing the distance between objects in a
graph stored on disk can be very expensive. Hence, we show how to build compact indexes that
allow us to quickly �nd the distance between objects at search time. Experiments show that
our algorithms are e�cient and scale well.

1 Introduction

Proximity search is successfully used in information retrieval (IR) systems to locate documents that

have words occurring \near" each other [Sal89]. In this paper we apply this notion to search across

an arbitrary database for objects that are \near" other objects of interest. Just as the distance

between words in a document is an approximation of how related the terms are in the text, proximity

search across an entire database gives a rough or \fuzzy" measure of how related objects are. While

some situations demand \precise" query results, more and more online databases|such as content

databases on the Web|enable users to interactively browse results and submit re�ning queries.

In these settings, proximity estimates can be very useful for focusing a search. For example, we

may be looking for a \person" with a last name that sounds like \Schwartz" but may not know if

this person is an employee, a manager, or a customer. A search may yield many people, spread

out throughout the database. If we also know that the target person is somehow related, say, to a

particular complaint record, then we can narrow down the original set, ranking it by how closely

related each person is to the complaint. Similarly, in a database that tracks overnight package

delivery, we may wish to locate any information pertinent to a lost package (e.g., people that

handled it, locations it went through, customers that signed for it) ranked by how relevant the

information is to the lost package.

For object-proximity searching, we view the database simply as a collection of objects that are

related by a distance function. The objects may be tuples, records, or actual objects, or even �elds

1

within these structures, if �ner granularity is desired. The distance function is provided by the

system or an administrator; it indicates how \closely related" certain (not necessarily all) pairs of

objects are. For instance, in a personnel database, the number of links that separate objects may

be a good measure of how closely they are related. Two employees working in the same department

are closely related (each employee is linked to the same department); if two departments cooperate

on the same product, then an employee in one department is related to an employee in the other,

but to a lesser extent. We can also weight each type of link to re
ect its semantic importance. In

a relational context, tuples related by primary-key/foreign-key dependencies could be considered

closely linked, while tuples in the same relation could also be related, to a lesser extent.

Traditional IR proximity search is intra-object, i.e., it only considers word distances within a

document. Our search is inter-object, i.e., we rank objects based on their distance to other objects.

This di�erence introduces two related challenges, which are the main focus of this paper.

� Distance Computation: Text intra-object distance is measured on a single dimension. Thus,

it is easy to compute distances between words if we simply record the position of each word

along this one dimension. For inter-object search, we measure distance as the length of the

shortest path between objects. For instance, in a database of three objects, X , Y , and Z, if

we are given only that the distance between X and Y is 5, and between Y and Z is 3, we

should conclude that X and Z are 8 units apart.

� Scale of Problem: For e�cient inter-object proximity search, we need to build an index that

gives us the distance between any pair of database objects. Since there can be a huge number

of objects, computing this index can be very time consuming, especially when all our data

does not �t in main memory. For intra-object search, on the other hand, we only need to

know the distance between words that are within an object, a much smaller problem.

In this paper we describe optimizations and compression schemes that allow us to build indexes

that can e�ciently report distances between any pair of objects. Experiments show that our

algorithms have modest time and space requirements and scale well.

In Section 2, we trace an example over a sample database, to further motivate inter-object

proximity search. Section 3 then de�nes our problem and framework in more detail. In Section 4,

we illustrate a particular instance of our general framework, as applied to keyword searching over

databases. Section 5 details our algorithms for e�cient computation of distances between objects,

and experimental results are given in Section 6. We discuss related work in Section 7.

2 Motivating Example

The Internet Movie Database (www.imdb.com) is a popular Web site with information about over

140,000 movies and over 500,000 �lm industry workers. We can view the database as a set of linked

2

objects, where the objects represent movies, actors, directors, and so on. In this application it is

very natural to de�ne a distance function based on the links separating objects. For example, since

John Travolta stars in the movie \Primary Colors," there is a close relationship between the actor

and the movie; if he had directed the movie, the bond might be tighter. If two actors star in the

same �lm, a relationship exists between them as well.

Within our framework, proximity searches are speci�ed by a pair of queries:

� A Find query speci�es a Find set of objects that are potentially of interest. For our example,

let us say that the �nd query is keyword-based. For instance, \Findmovie" locates all objects

of type \movie" or objects with the word \movie" in their body.

� Similarly, a Near query speci�es a Near set. The objective is to rank objects in the Find set

according to their distance to the Near objects. For our examples we assume the near query

is also keyword-based.

For example, suppose a user is interested in all movies involving both John Travolta and Nicholas

Cage. This could be expressed as \Find movie Near Travolta Cage." Notice that this query

does not search for a single \movie" object containing the \Travolta" and \Cage" strings. In this

database, the person named \Travolta" is represented by a separate object. Similarly for \Cage."

Movie objects simply contain links to other objects that de�ne the title, actors, date, etc. Thus,

the proximity search looks for \movie" objects that are somehow associated to \Travolta" and/or

\Cage" objects.

To illustrate the e�ect of this query, it is worthwhile to jump ahead a bit and show the results

on our implemented prototype. The details of this system are described in Section 4; the database

contains the IMDB subset referring to 1997 �lms. Figure 1 shows the query \Find movie Near

Travolta Cage" along with the top 10 results. (The drop-down menus next to each text input

�eld are described in Section 4.) As we might expect, \Face/O�" scored highest since it stars

both actors. That is, both actor objects are a short distance away from the \Face/O�" movie

object. The next �ve movies all received the same second-place score, since each �lm stars only

one of the actors. (See Section 3 for a detailed explanation of how ranking works.) The remaining

movies re
ect indirect a�liations|that is, larger distances. \Original Sin," for example, stars Gina

Gershon, who also played a part in \Face/O�."

To illustrate other queries, a user could \Find movie Near Colorado" to locate all movies �lmed

in Colorado (or with the word \Colorado" in their titles). A user might try to \Find love Near

comedy" to �nd all references to \love" in a comedy|movie titles, actor names, trivia, etc. As a

�nal example, we might wish to rank movies by the number of di�erent locations they were �lmed

at by trying to \Find movie Near location." Our prototype is available to the public on the Web,

as described in Section 4.

Proximity searches are inherently fuzzy. If one can precisely describe the desired information

(e.g., what relation it occurs in, the exact path to it, the precise contents of �elds) then traditional

3

Figure 1: Results of proximity search over the Internet Movie Database

database queries will usually be best. Still, proximity search is very useful when it is impractical

to generate a speci�c query, or when a user simply wants to search based on the general relevance

of di�erent data objects.

Current database and IR systems do not provide inter-object proximity search. Often, ap-

plications implement particular versions of proximity search. For example, the IMDB Web site

does o�er a form for searching for movies with multiple speci�ed actors. Our goal is to provide

a general-purpose proximity service that could be implemented on top of any type of database

system.

3 The Problem

The basic problem is to rank the objects in one given set (the Find set) based on their proximity

to objects in another given set (the Near set), assuming objects are connected by given numerical

\distances." We �rst discuss our conceptual model in detail, and then we formalize our notion of

proximity.

3.1 Conceptual Model

Figure 2 shows the components of our model. An existing database system stores a set of objects.

Applications generate Find and Near queries at the underlying database. (In our motivating ex-

ample, these queries were keyword searches). The database evaluates the queries and passes Find

and Near object result sets (which may be ranked) to the proximity engine. Database objects are

4

Find Query

Near Query

Find/Near Objects Ranked
Find

Objects
Proximity EngineDatabase

Distance
Module

Find Query

Figure 2: Proximity search architecture

opaque to the proximity engine, which only deals with object identi�ers (OIDs).1 The proximity

engine then re-ranks the Find set, using distance information (and possibly the initial ranks of the

Find and Near objects). The distance information is provided by a distance module. Conceptually,

it provides the proximity engine a set of triplets (X , Y , d), where d is the known distance between

database objects with identi�ers X and Y . (Note that the distance module uses the same identi�ers

as the database system.) We assume that all given distances are greater than or equal to 1. The

proximity engine then uses these base distances to compute the lengths of shortest paths between

all objects. Because we are concerned with \close" objects, we assume the distance between any

two objects to be exact only up to some constant K, returning 1 for all distances greater than K.

This assumption enables improved algorithms, as described in Section 5.

From the point of view of the search engine, the database is simply an undirected graph with

weighted edges. This does not mean that the underlying database system must manage its data

as a graph. For example, the database system may be relational, as illustrated by the left side of

Figure 3. This shows a small fragment of a normalized relational schema for the Internet Movie

Database. The right side of the �gure shows how that relational data might be interpreted as a

graph by the search engine. Each entity tuple is broken into multiple objects: one entity object

and additional objects for each attribute value. Distances between objects are assigned to re
ect

their semantic closeness. For instance, in Figure 3 we assign small weights (indicating a close

relationship) to edges between an entity and its attributes, larger weights to edges linking tuples

related through primary and foreign keys, and the largest weights to edges linking entity tuples

in the same relation. (For clarity, the graph shows directed, labeled edges; our algorithms ignore

the labels and edge directions.) Of course, the distance assignments must be made with a good

understanding of the database semantics and the intended types of queries. It is simple to model

object-oriented, network, or hierarchical data in a similar manner.

1Most relational systems do not expose explicit row identi�ers; we can use primary key values or \signatures,"

e.g., checksums computed over all tuple �eld values. Individual �elds can be identi�ed simply by their values.

5

Actor

Name/1

Actor/10

John
Travolta Movie/4

Actor/4

Title/1 Year/1

Face/Off 1997

Movie/10

Movie/4

Mad City 1997

Movie/10
Name/1

Actor/10

Nicholas
CageMovie/4

Actor/4
Movie/4

Actor/4

Con Air 1997

Actor/4

Movie/10

Title/1 Year/1 Title/1 Year/1

Movie

ID
Title
Year

Actor

ID
Name

Movie/Actor

MovieID
ActorID

Figure 3: A fragment of the movie database relational schema and a database instance as a graph

3.2 Proximity and Scoring Functions

Recall that our goal is to rank each object f in a Find set F based on its proximity to objects in a

Near set N . Each of these sets may be ranked by the underlying database system. We use functions

rF and rN to represent the ranking in each respective set. We assume these functions return values

in the range [0; 1], with 1 representing the highest possible rank. We de�ne the distance between

any two objects f 2 F and n 2 N as the weight of the shortest path between them in the underlying

database graph, referred to as d(f; n). To incorporate the initial rankings as well, we de�ne the

bond between f and n (f 6= n):

b(f; n) =
rF (f)rN(n)

d(f; n)t
(1)

(We set b(f; n) = rF (f)rN(n) when f = n.) A bond ranges from [0; 1], where a higher number

indicates a stronger bond. The tuning exponent t is a non-negative real that controls the impact

of distance on the bond.

While a bond re
ects the relationship between two objects, in general we wish to measure

proximity by scoring each Find object based on all objects in the Near set. Depending on the

application, we may wish to take di�erent approaches for interpreting bonds to the Near objects.

We discuss three possible scoring functions:

� Additive: In the query from our motivating example to \Find movie Near Travolta Cage,"

(Section 2), our intuition leads us to expect that a �lm closely related to both actors should

score higher than a �lm closely related to only one. To capture this intuition, we score each

object f based on the sum of its bonds with Near objects:

score(f) =
X

n2N

b(f; n) (2)

6

Here the score can be greater than 1.

� Maximum: In some settings, the maximum bond may be more important than the total

number. Thus, we may de�ne

score(f) = max
n2N

b(f; n) (3)

For this function, scores are always between 0 and 1.

� Beliefs: We can treat bonds as beliefs [Goo61] that objects are related. For example, suppose

that our graph represents the physical connections between electronic devices, such that two

objects close together in the graph are close together physically as well. Assume further that

rN gives our belief that a Near device is faulty (1 means we are sure it is faulty). Similarly,

rF can indicate the known status of the Find devices. Then, for a device f 2 F and a device

n 2 N , b(f; n) may give us the belief that f is faulty due to n, since the closer f is to a faulty

device, the more likely it is to be faulty. Given this, our combined belief that f is faulty

(between 0 and 1), given the evidence of all the Near objects, is:

score(f) = 1�
Y

n2N

(1� b(f; n)) (4)

Of course other scoring functions may also be useful, depending on the application. We expect

that the proximity search engine will provide several \standard" scoring functions, and that users

submitting queries will specify their intended scoring semantics. This is analogous to how users

specify what standard function (e.g., COUNT, MAX, AVG) to use in a statistical query.

4 Keyword Search Application

This section describes a prototype that implements our framework, as �rst mentioned in Section 2.

By connecting to our system on the Web, users can search databases by specifying Find and Near

keywords. Those keywords are used to generate corresponding input object sets for our proximity

engine, which then ranks Find objects by their relevance to the Near objects.

We implemented our proximity architecture on top of Lore [MAG+97], a database system de-

signed at Stanford for storage and queries of graph-structured data.2 Lore's data model is the

Object Exchange Model (OEM) [PGMW95], originally designed at Stanford to facilitate integration

of data from heterogeneous sources. An OEM database is essentially a directed graph, with data

objects linked by textually labeled edges that describe relationships. In OEM, atomic data such

as integers, reals, strings, or images are stored only in leaf objects. An OEM database isn't forced

to conform to any prespeci�ed schema; hence, it is useful for semistructured data, which may have

2We chose Lore because it already has fast intra-object keyword search and because we have access to the source

code for Lore's Web interface. We could build a similar prototype over an object-oriented or relational database.

7

Find picture Near China Photos of 6 Chinese students, followed by Prof. Widom,
who advises 3 of them, and Prof. Ullman, who advises 2

All of Prof. Garcia-Molina's publications, followed by
publications of his students

Find publication Near Garcia

Find publication Near Garcia
Widom

The top publications are co-authored by Profs. Garcia-
Molina and Widom, followed by their individual papers

Find group_member Near
September

The top results are members born in September

The top pub. has "OEM" in its title, followed by a pub.
stored in "oem.ps," followed by one with keyword "oem"

Find publication Near OEM

Figure 4: Summary of Stanford Database Group keyword searches

some structure but may also contain irregularities. The graph from Figure 3 is in fact an OEM

database, though we have augmented the model to support weights on edges.

To generate the Find and Near sets for our proximity measurement, our application simply

takes keywords as input. Note that in an OEM database, a keyword could identify an object

with a speci�c incoming edge label, an atomic object whose data contains the keyword, or both.

The two \Category" drop-down menus in Figure 1 provide an alphabetical list of unique labels in

the database; the number of unique labels is generally small, and the list can be very helpful for

specifying meaningful searches. Choosing a label from either menu adds that label as a keyword in

the corresponding �eld. For each keyword, we use Lore indexes to add to the Find or Near set all

objects with a matching incoming label and all atomic objects containing the speci�ed keyword.

This approach lets us mix labels and data among our keywords in either the Find or Near lists,

important for users unfamiliar with the structure of the database. In our motivating example

from Section 2, \movie" and \location" are labels, while \Travolta," \Cage," \Colorado," \love,"

and \comedy" are atomic data. Currently, Lore does not rank the objects returned by a keyword

lookup; hence we assign all objects an initial rank of 1.

Based on informal usability tests, we chose to set t to 2 in our bond de�nition (Equation 1), to

weight nearby objects more heavily; this setting causes a bond to drop quadratically as distance

increases. To capture the intuition given in the motivating example, we use the additive scoring

function (Equation 2) to score each Find object. Together, our choice of tuning parameter and

scoring function will give a Find object f1 that is 1 unit away from a Near object twice the score

of an object f2 2 units away from two objects. In the user interface, we linearly scale and round

all scores to be integers.

Figure 4 summarizes the results of several keyword search queries over a database describing the

members, projects, and publications of the Stanford Database Group (DBGroup). The database

has been built from scratch in OEM, containing about 4200 objects and 3600 edges. Initial supplied

distances are similar to those shown in Figure 3. Examples show that proximity search is a useful

8

complement to traditional database queries, allowing users to narrow in on relevant data without

having to understand the nature of all database relationships, and without fully specifying structural

queries. (Additional query results from the Internet Movie Database are included in the appendix.)

In this interactive setting, users can easily browse results and submit additional queries. Note that

this application re
ects just one particular set of choices for instantiating our proximity model|

how we generate the Find/Near sets, our initial ranking functions rF and rN , our tuning exponent

t in the bond de�nition, and our choice of scoring function. Our keyword search application is

available to the public at http://www-db.stanford.edu/lore; users can submit their own searches

and browse the results.

5 Computing Object Distances

For our proximity computations to be practical, we need to e�ciently �nd the distances between

pairs of objects. In this section we discuss the limitations of naive strategies and then focus on our

techniques for generating indexes that provide fast access at search time.

First, we discuss the framework for our distance computations. As described in Section 3.1, the

proximity engine takes as input Find and Near sets of OIDs, and a set of base distances between

objects. Let V be the set of objects. We assume the distances are provided by the distance module

of Figure 2 as an edge-list relation E1, with tuples of the form hu; v; wi, if vertices u; v 2 V share

an edge of weight w. For convenience, we assume that E1 contains hu; v; wi, if hv; u; wi is in E1.

Let G refer to the graph represented by E1.

In graph G, we de�ne dG(u; v) to be the shortest distance between u and v. (We will drop

the subscript G if it is clear which graph we are referring to.) As mentioned in Section 3.1, our

proximity search focuses on objects that are \close" to each other. Hence, we assume all distances

larger than someK are treated as1. In our prototype, setting K = 12 for the IMDB and DBGroup

databases yields reasonable results, given the initial supplied distances.

5.1 Naive Approaches

At one extreme, we could answer a distance query by performing all required computation at search

time. A classical algorithm to compute the shortest distance between two vertices is Dijkstra's

single-source shortest path algorithm [Dij59]. The algorithm produces the shortest distance using

a \best-�rst" search to explore new, possibly shorter paths. At each iteration, we explore N(v),

the vertices adjacent to some vertex v. While the algorithm is e�cient for graphs in main memory,

exploring N(v) may require jN(v)j random seeks for an arbitrary disk-based graph, and computing

the shortest distance could take as many as jE1j random seeks. Note that this behavior persists

even when we are only interested in distances no larger thanK. There have been recent attempts to

reduce I/O in the disk-based version of the algorithm using tournament trees [KS]; however, these

9

attempts still require many random seeks. In addition, since a general Find/Near query requires

multiple distance computations, we would have to call the algorithm min(jFindj; jNearj) times.
A better approach would be to precompute shortest distances between all pairs of vertices and

store them in a lookup table for fast access. The classical algorithm to compute all-pairs shortest

distances is Floyd-Warshall's dynamic programming based algorithm [Flo62]. An obvious disk-

based extension of the algorithm requires jV j scans of G. Clearly this is ine�cient, and there is

no simple way to modify the algorithm to �nd only distances no larger than K. There has been

much work on the related problem of computing the transitive closure of a graph. In Section 7 we

discuss these approaches and why they are not suitable for our problem.

In the next section, we propose an approach for precomputing all-pairs distances of at most

K that is e�cient for disk-based graphs, using well-known techniques for processing \self-joins"

in relational databases. Section 5.3 shows how we can exploit available main memory to further

improve both the space and time requirements of index construction.

5.2 Precomputing Distances Using \Self-Joins"

Conceptually, we use the following idea as the basic step for precomputing all-pairs shortest dis-

tances. We will assume that K is a power of two for ease of exposition; of course, our algorithms

work for general K as well. Let A be the adjacency matrix of G; for any vi; vj 2 V , A[vi][vj] = w

if an edge hvi; vj; wi exists. Else, if i = j; A[vi][vj] = 0, else A[vi][vj] = 1. Given A, we compute

A2, where the matrix multiplication is taken over the closed semiring of R+ [f1g, with scalar

addition and multiplication replaced by the min operator and scalar addition respectively [AHU74].

Observe that for any pair (vi; vj) in G, A2 contains the shortest distance between vi and vj that

goes through at most one other vertex. Similarly, we can generate A4 by squaring A2, and so on,

until we obtain AK .

Figure 5 presents our implementation of the above idea, using simple self-join techniques.

Roughly, Steps [2] { [10] correspond to the basic matrix multiplication idea we just described.

El corresponds to the edge-list representation of A2l�1

, and E0

l corresponds to the edge-list repre-

sentation of A2l�1

before applying the min operator. (We will soon see what they mean intuitively.)

In Steps [5] { [7], we are generating tuple hvj ; v0j; wk + w0

ki, since we know that the shortest dis-

tance between vj and v0j cannot exceed wk + w0

k (due to a path through vi). Step [6] restricts our

selection to weights in the desired range. In Steps [8] { [10], we eliminate non-shortest distances

between vertex pairs. By iterating the above steps dlog2Ke times (Step [1]), we square the original
A matrix dlog2Ke times, obtaining AK . Because all initial distances are at least 1, the �nal matrix

is guaranteed to contain all shortest distances at most K. The �nal output Dist of the above

algorithm is a distance lookup table that stores the K-neighborhoods of all vertices. That is, the

table stores all hvi; vj ; wki for all vertex pairs vi, vj with shortest path length wk units (wk � K).

For convenience, we will sometimes refer to E0

l as the unzapped edge-list, and we refer to El as the

10

Algorithm: Distance self-join

Input: Edge set E1, Maximum required distance: K

Output: Lookup table Dist supplies the shortest distance (up to K) between any pair of objects

[1] For l = 1 to dlog2Ke

[2] Copy El into E0

l+1.

[3] Sort El on �rst vertex. == To improve performance

[4] Scan sorted El:

[5] For each hvi; vj; wki and hvi; v0

j; w
0

ki in El where vj 6= v0

j

[6] If (wk + w0

k � 2l) and (wk +w0

k � K)

[7] Add hvj ; v0

j; wk +w0

ki and hv
0

j ; vj; wk +w0

ki to E
0

l+1.

[8] Sort E0

l+1 on �rst vertex, and store in El+1.

[9] Scan sorted El+1:

[10] Remove tuple hu; v; wi, if there exists another tuple hu; v; w0i, with w > w0.

[11] Let Dist be the �nal El+1.

[12] Build index on �rst vertex in Dist.

Figure 5: \Self-Join" distance precomputation

corresponding zapped edge-list, with non-shortest distances removed.

The above procedure runs with little I/O overhead, since sorting the data enables sequential

rather than random accesses. Note that other e�cient techniques are possible for computing the

self-join (such as hash joins), and in fact given El we can use standard SQL to generate El+1 (see

appendix). Querying for d(vi; vj) is also e�cient|since we index the Dist table, we can access the

neighborhood of vi, and look for a tuple of the form hvi; vj; wki. If there is such a tuple, we know

the distance to be wk. If no such tuple exists, the distance is greater than K, and we return 1.

However, the construction of Dist could be expensive using the above approach, since in Step

[5] { [7], we produce the cross-product of each vertex neighborhood with itself. The size of such

a cross-product could be as large as jV j2 in the worst-case. For instance, when we executed the

self-join algorithm on the the 4MB edge-list for the IMDB database described in Section 2 for

K = 8, the edge-list grew to about one gigabyte|250 times larger than the initial input! Sorting

and scanning the large unzapped edge-lists could be expensive as well. In the next section, we

propose a technique to alleviate this problem.

5.3 Hub Indexing

We now propose hub indexing, which allows us to encode shortest distances in far less space than

required by the self-join algorithm, with little sacri�ce in access time. We use Figure 6 to explain

what hubs are and how they can be used to compute distances e�ciently. If we execute our simple

self-join algorithm from the previous section on the given graph, we will explicitly store the jAj�jBj

11

p

q

A B

b

a

Figure 6: Hub vertices

pair-wise shortest distances from vertices in A to those in B. (We also store distances for pairs of

objects both in A or both in B.) Computing d(a; b) for some a 2 A and b 2 B merely involves

checking the Dist table for a tuple of the form ha; b; wi, as described earlier.

In Figure 6 we see that if we remove p and q, the graph is disconnected3 into two sub-graphs

A and B. Rather than storing all jAj � jBj distances, suppose we store only the jAj+ jBj shortest
distances to p, the jAj + jBj shortest distances to q, and the shortest distance4 between p and q.

Note that space savings are maximized when jAj = jBj. Of course, the query procedure for such

an approach is slightly more complex. We can see that the shortest-path between a and b can be

one of a � p � b (not through q), a � q � b (not through p), a � p � q � b, or a � q � p � b. We

can compute d(a; b) by �nding these four distances and choosing the smallest.

The above description gives the reader a rough idea of our approach. By �nding hubs such as

p and q, we can sharply reduce the storage required for a distance index, and we will show how

to e�ciently handle the more complex query procedure. In addition, we can store hubs and the

shortest distances between them in main memory. As we allocate more memory for hub storage,

our index shrinks and query times decrease as well. E�ectively choosing hubs in an arbitrary graph

is a challenging problem, an issue we defer to Section 5.3.4. Assuming we have a set of hubs, the

following sections describe how to build a hub index and then answer distance queries using it.

5.3.1 Constructing Hub Indexes

As suggested by the above discussion, a hub index is comprised of two key components: a hub set H

(and the shortest distance between each pair of its elements) and a table of distances between pairs

of objects whose shortest paths do not cross through elements of H . For simplicity, we rede�ne

the Dist lookup table from Section 5.2 to be this new table. The correctness of our hub index

creation algorithm (and the corresponding query procedure given in the next section) is proven in

3fp; qg is known as a separator in graph theory, as we will discuss shortly
4Note that our discussion is independent of whether or not an edge connects p and q

12

the appendix.

Given H , we can reuse the algorithm of Figure 5 almost verbatim to construct the new Dist

table. The only required change is to Step [6], which we replace with

[60] If (wk + w0

k � 2l) and (wk + w0

k � K) and vi =2 H

By checking that vi is not in H we make sure that we do not consider any paths that cross hubs.

(Paths with hubs as endpoints are still considered.) For each v 2 V ,Dist stores all vertices reachable

within a distance of K without crossing any hubs; we call this set of vertices the \hub-bordered"

neighborhood of v.

As we will explain in the next section, pair-wise distances between hubs must be consulted

many times to evaluate a distance query. Fortunately, experiments discussed in Section 6 show

that even a small set of hubs greatly reduces index size. Hence, our query algorithm assumes

that the pair-wise distances of all hubs are available in main memory. We wish to build a square

adjacency matrix Hubs such that Hubs[hi][hj] gives the shortest distance between hubs hi and hj .

To do so, we �rst initialize each entry of Hubs to 1. Then, with one sequential scan of Dist, for

each edge hhi; hj ; wki, where hi; hj 2 H , we set Hubs[hi][hj] = wk. This step \short-cuts" the need

to recompute all distances from scratch. Finally, we use Floyd-Warshall's algorithm to compute

all-pairs shortest distances in Hubs. We must conceptually consider paths through non-hubs, but

these were already accounted for when generating Dist tuples for paths from one hub to another

(see Lemma 9.2 in the appendix). Floyd-Warshall works in-place, without requiring additional

memory. Since H is typically small and engine initialization occurs rarely, we are generally not

concerned with the time spent computing Hubs from H and Dist. Still, we have the option of

fully materializing Hubs at index creation time and then loading it directly into memory at engine

initialization.

Since we keep hubs and their distances in memory, a hub index has the nice property that

answering a distance query requires less work on disk as more memory is made available. In fact,

if the entire adjacency matrix �ts in memory, we can choose H to be V and eliminate query-time

disk access entirely. Our approach reveals a smooth transition to Floyd-Warshall's algorithm as

main memory increases. Engine administrators can specify a limit for the number of hub points

based on available memory.

5.3.2 Querying Hub Indexes

Given the disk-based Dist table and the in-memory matrix Hubs, we can compute the distance

between any two objects u and v using the algorithm in Figure 7. The algorithm performs a case-

by-case analysis when it answers such queries. To help explain the algorithm, we refer back to the

graph in Figure 6, assuming H = fp; qg. Steps [1] through [8] are straightforward, since these steps
handle the case where one or both of u and v are in H . (In terms of Figure 6, suppose that u

and/or v are in fp; qg.) Steps [10] through [17] address the case where neither input vertex is in H .

13

Algorithm: Pair-wise distance querying

Input: Lookup table on disk: Dist, Lookup matrix in memory: Hubs,

Maximum required distance: K, Hub set: H

Vertices to compute distance between: u; v (u 6= v)

Return Value: Distance between u and v: d

[1] If u; v 2 H, return d =Hubs[u][v].

[2] d =1

[3] If u 2 H

[4] For each hv; vi; wki in Dist

[5] If vi 2 H == Path u � vi � v

[6] d = min(d;wk+Hubs[vi][u])

[7] If d > K, return d =1, else return d.

[8] Steps [4] { [7] are symmetric steps if v 2 H, and u =2 H.

[9] == Neither u nor v is in H

[10] Cache in main-memory (Eu) all hu; vi; wki from Dist

[11] For each hv; v0

i; w
0

ki in Dist

[12] If (v0

i = u)

[13] d = min(d;w0

k) == Path u � v without crossing hubs

[14] For each edge hu; vi; wki in Eu

[15] If v0

i 2 H and vi 2 H == Path u � vi � v0

i � v through hub vertices

[16] d = min(d;wk +w0

k+Hubs[v
0

i][vi])

[17] If d > K, return d =1, else return d.

Figure 7: Pair-wise distance querying

Steps [12] { [13] consider the case where the shortest path from u to v does not go through any of

the vertices in H and its distance is therefore explicitly stored in Dist. (In Figure 6, consider the

case where both vertices are in A.) Steps [14] { [16] handle shortest paths through vertices in H ,

such as a path from any a 2 A to any b 2 B in the �gure.

If both u and v are in H , no disk I/O is performed. Recall that Dist is indexed based on the

�rst vertex of each edge. Hence, in case either u or v is in H , one random disk seek5 is performed

to access the hub-bordered neighborhood of v or u (Steps [4] { [8]). In case neither is in H , two

random disk seeks are performed to access the hub-bordered neighborhoods of both u and v (Steps

[10] and Step [11]). The algorithm implicitly assumes that the hub-bordered neighborhood for

any given vertex can be cached into memory (Step [10]). Since we use hubs, and given that K

is generally small, we expect this assumption to be safe. Additional bu�ering techniques can be

employed if needed.

5For clarity of exposition, we do not mention any additional seeks required to navigate the index. \One" seek

may translate to two or three, depending on the index.

14

5.3.3 Generalizing to Set Queries

The previous section discussed how to use a hub index to look up the distance between a single pair

of objects. As described in Section 3.1, however, a Find/Near query checks the distance between

each Find and each Near object. For instance, we may need to look up the pair-wise distances

between Find = fv1; v2g and Near = fv3; v4; v5g The naive approach to answering such a query

is to check the hub index for each of fv1; v3g, fv1; v4g, fv1; v5g, and so on. When we have F Find

objects and N Near objects, this approach will require about 2� F �N disk seeks, impractical if

F and N are large. If the Dist table data for all of either the Find or the Near objects �ts in main

memory, we can easily perform all Find/Near distance lookups in F +N seeks. If not, we can still

bu�er large portions of data in memory to improve performance.

In some cases, even F + N seeks may still be too slow. Our movie database, for example,

contains about 6500 actors. Hence, �nding the result to a query like \Find actor Near Travolta"

will take at least 6500 seeks. To avoid such cases, we allow engine administrators to specify object-

clustering rules. For example, by clustering all \actors" together in Dist we can avoid random

seeks and execute the queries e�ciently. Our engine is general enough to cluster data arbitrarily

based on user speci�cations. In our keyword proximity search application (Section 4), we cluster

based on labels, such as \Actor," \Movie," \Producer," etc. Note that this approach increases the

space requirements of Dist, because these clusters need not be disjoint. To mitigate the replication,

preliminary investigation suggests that we can signi�cantly compress vertex neighborhoods on disk,

discussed further in Section 6.

5.3.4 Selecting Hubs

Recall that we allocate an in-memory matrix of size M for storage of hubs. Hence, for any graph,

we can select up to
p
M hubs. In this section, we discuss our strategy for hub selection, based on

theoretical work on balanced separators.

Consider again the example of Figure 6. Suppose we had a procedure that could pick p and

q as vertices that disconnect the graph into two \balanced" sub-graphs. Given such a procedure,

we could recursively disconnect both A and B in a similar manner to gain further savings. This

recursion would generate a hierarchy of vertex sets, each of which disconnects a graph into two

sub-graphs.

More formally, for a graph G = (V;E), let G[X]; X � V denote the subgraph of G induced on

X . Let V1; V2 be disjoint subsets of V . We say that a set of vertices S � V separates V1; V2 if for

all pairs of vertices (v1; v2); v1 2 V1; v2 2 V2, all paths from v1 to v2 go through some vertex from

S. Let S � V; jSj = c be a separator for disjoint sets V1; V2 � V . We say that S is a c�separator
for G if V �S = V1[V2. In other words, the removal of S disconnects G, yielding two components

G[V1]; G[V2]. We say that S is a balanced c-separator if min(jV1j; jV2j) � jV j=3. Let G be a family

of graphs closed under vertex deletion, i.e., 8G = (V;E) 2 G; G[V �X] 2 G; 8X � V . We say that

15

G has a c(n)-balanced separator if 8G = (V;E) 2 G; jV j = n, G has a c(n)-balanced separator. For

example, G can be the set of all planar graphs, in which case it has a O(
p
n)-balanced separator

[LT80]. The family of graphs having tree-width k [Bod93] has a k-balanced separator [RS86]. There

exist linear time algorithms that compute separators for graphs of constant treewidth [Bod96], and

for planar graphs [LT80].

It can be shown that a balanced separator yields an optimal graph decomposition for in-memory

distance queries [HKRS94, CZ95, Pel97]. Hence, balanced separators would be ideal candidates for

hubs. For tree-shaped data, such as HTML or XML [Con97] documents, we can use the separator

algorithm mentioned above to generate hubs.

Unfortunately, for arbitrary graphs, a nontrivial balanced separator theorem does not hold;

consider the family of all complete graphs. The best known approximation yields a separator that

is a factor of O(logn) larger than the minimum [AKR]. Hence, we have designed an heuristic

for selecting hubs that is e�cient to implement and performs well in practice. The heuristic is to

select up to
p
M vertices with high degree as hubs. We can make this selection with one scan of

the edge-list. Our strategy serves two purposes. Firstly, notice that Steps [5] { [7] of the original

self-join algorithm (Figure 5) generate deg2(vi) tuples, where deg(vi) is the degree of vertex vi. In

the revised hub version of the algorithm, we avoid generating deg2(v) tuples for vertices of highest

degree. Secondly, it is quite likely that high degree vertices lie on many shortest paths. Just like

airline hub cities in a route map, vertices that lie on many shortest paths often e�ectively divide

the graph into \balanced" subsets.6 Note that the correctness of our indexing algorithm does not

depend on hubs actually separating a graph (see appendix); any vertex can in principle be chosen

as a hub. Experiments for hub index creation are discussed in the next section. The results show

that our hub selection heuristic is e�ective at reducing the time and space required to build an

index.

6 Performance Experiments

We now study some performance related aspects of building hub indexes. Questions we address

in this section include (1) Given a small, �xed number of hubs, what are the space and time

requirements of index construction? (2) How do the algorithms scale with larger datasets? (3)

What is the impact of selecting fewer or more hubs on the index construction time? (4) How fast

is query execution? For our experiments, we used a Sun SPARC/Ultra II (2� 200 MHz) running

SunOS 5.6, with 256 MBs of RAM, and 18 GBs of local disk space.

We use the IMDB dataset to illustrate some of the trade-o�s in this paper. We also experimented

with the DBGroup dataset, but due to lack of space we do not present these results|however, the

results were similar to those of IMDB. Since the IMDB dataset is small (its edge-list is about

6Note that ideally, we would choose only those vertices that lie on many shortest paths, but determining this

e�ciently for each vertex seems as di�cult as computing all shortest paths directly.

16

0

2

4

6

8

10

12

14

2 4 6 8 10 12
S
p
ac
e
re
q
u
ir
ed
(r
at
io
to
in
p
u
t)

K

Temporary 3

3

3

3

3
Final +

+ +
+

+

Figure 8: Storage requirements with varying K

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12

T
im
e
(s
ec
s)

K

Final Index 3

3

3

3

3

Figure 9: Index construction time with varying K

4MB), we built a generator that takes as input IMDB's edge-list and scales the database by any

given factor S. Note that we do not blindly copy the database to scale it; rather we create a

\forest" by computing statistics on the small dataset and producing a new, larger dataset with

similar characteristics. For instance, the percentage of popular actors will be maintained in the

scaled-up version as well, and this set of actors will be acting in a scaled-up number of new movies.

Similarly, movies will have the same distribution of actors from the common pool of S times as

many actors; the ratio of \romance" movies to \action" movies will stay about the same. Since our

generator produces the above graphs based on a real dataset, we believe it gives us a good testbed

to empirically evaluate our algorithms. While we think the structure of our data is typical of many

databases, of course it does not re
ect every possible input graph. As we develop more applications

for proximity search we plan to study the performance over di�erent graph topologies.

First, we discuss index performance when the number of hubs is �xed at a \small" number.

Recall from Section 5.3 that the algorithm requires temporary storage (for the unzapped edge-lists)

before creating and indexing the �nal zapped edge-list. For our experiments, we build an ISAM

index over the �nal edge-list; other indexing techniques are of course possible. Figure 8 shows the

temporary and �nal space requirements of a hub index for di�erent values of K. We de�ne the

space required as a multiple of the size of the original input. For this graph, we set S = 10 and we

choose no more than 2:5% of the vertices as hubs. For this case (about 40MB of data), we required

less than 250K of main memory to store our Hubs matrix. We see that both the temporary and

�nal space requirements can get large. For K = 12 (the K used for our prototype in Section 4),

the temporary and �nal space requirements are about 12 times and 6 times larger than the input

edge-list, respectively. Similarly, Figure 9 reports the total time to create a hub index for di�erent

values of K. We see quadratic growth of both space and time requirements, due to the quadratic

growth in the size of a vertex neighborhood. Momentarily we will show that increasing the number

of hubs reduces space and time requirements.

17

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50

S
p
ac
e
(M
B
s)

Scale

Forest 3

3

3

3

3

3

Figure 10: Total storage with varying scale

1

10

100

1000

0.1 1 10 100
S
p
ac
e
re
q
u
ir
ed
(r
at
io
to
in
p
u
t)

Number of hubs as percentage of vertices

Temporary 3

3

3

3

3 3

3 3

3

3

Final +

+

+
+

+ +
+ +

+
+

Figure 11: Space ratio with varying number of hubs

Next, we consider how our algorithms scale as the databases grow in size. In Figure 10 we show

the total storage required to store the �nal index when we (again) choose no more than 2:5% of

vertices as hubs, for K = 12. The key point to note from the graph is that the storage consumption

scales linearly, despite the fact that the large scaled graphs are tightly interconnected. We also

observed that the index construction times scaled linearly with data sets, but we do not show the

graph here due to lack of space.

In Figure 11, we see that relatively small increases in the number of hubs can dramatically

reduce the storage requirements of a hub index. Again, we consider the case where S = 10 and

K = 12. First, notice that if we choose fewer than 0:5% of vertices as hubs, we need signi�cantly

more space to store the �nal index; recall that we degenerate to the self-join algorithm when no

hubs are selected. If we can choose up to 5% of vertices as hubs we see that the storage ratio for

the �nal index drops to about 3:93. As we mentioned earlier, the graph shows that our algorithm

smoothly transitions into a main-memory shortest-path computation as more memory is made

available. Though not displayed here, the index construction time also follows a trend similar to

the space requirements.

In general, the index edge-lists are still large enough that any additional compression is useful.

By altering our on-disk representation of edge-lists we can gain signi�cant savings: we store a

given edge-list as an adjacency list and then use delta-compression, a standard technique used in

information retrieval systems for compressing sorted data [ZMSD93]. Our experiments showed

that when K = 12 and at most 2:5% of the vertices are hubs, the �nal index, including the delta-

compressed zapped edge-list, is 2.0 times the size of the initial edge-list; it is 2.5 times the size of

the delta-compressed initial edge-list. (As mentioned above, without compression the �nal index

was 6 times larger than the input.) Our index construction algorithms can be easily modi�ed to

operate on the delta-compressed edge-lists.

Finally, we give a couple of examples of query execution time. As can be expected, query times

18

vary based on the size of the input sets. Consider yet again the query \Find movie Near Travolta

Cage." In our (unscaled) IMDB dataset, jFindj � 2000 and jNearj = 2. With \movie" objects

clustered together and no more than 2:5% of the vertices as hubs, the query takes 1.52 seconds

(beyond the Find/Near queries executed by Lore). For the query \Find movie Near location,"

(jFindj � 2000; jNearj � 200) execution takes 2.78 seconds. Experiments not shown here indicate

that choosing more hubs reduces query execution time. We plan to develop a more comprehensive

benchmarking methodology in future work.

7 Related Work

Most existing approaches for supporting proximity search in databases are restricted to searching

only within speci�c �elds known to store unstructured text [Ora97, DM97]. Such approaches do not

consider interrelationships between the di�erent �elds (unless manually speci�ed through a query).

One company, Data Technologies Ltd. (www.dtl.co.il), markets technology for plain language search

over databases, but to the best of our knowledge their algorithms have not been made public.

A universal relation [Ull89] is a single relational view of an entire database, which enables

users to pose simple queries over relational data. A universal relation brings tuples within close

\proximity" together. Still, this approach does not support proximity search in general, and it

provides no mechanism for ranking relevant results.

There has been extensive work on the problem of computing the transitive closure of a disk-

resident directed graph, strictly more general than the problem of computing shortest distances

up to some K. Work by Dar and Ramakrishnan [DR94] examines many algorithms for this prob-

lem and supplies comparative performance evaluation, as well as discussion of useful measures of

performance. In principle, it would be possible to apply these algorithms to our problem, but in

practice this cannot be done e�ciently. For one, the algorithms are designed to perform transitive

closure queries at runtime. An input query is a set of vertices Q � V , and the output is the

set of all vertices R � V reachable from this set. It is easy to see [DR94] that the number of

I/Os required for such a query is quite large. The runtime performance hit could be solved by

pre-computing the transitive closure and storing it on disk. However, the space required by such

a scheme would be huge (O(V 2)). Our schemes avoid these pitfalls by not explicitly computing or

storing full neighborhoods.

8 Conclusion and Future Work

We have presented a framework for supporting proximity search across an entire database. While

traditional IR proximity searches are based on �nding keywords in textual documents, we demon-

strated a general approach for proximity search over any large set of interconnected data objects.

We formalized our notion of proximity and proposed several scoring functions. As an application of

19

our search techniques, we created a system that supports keyword proximity search over databases,

yielding interesting and intuitive results. Measuring proximity depends on e�cient computation

of distances between objects for a disk-based graph. We gave a formal framework and several ap-

proaches for solving the problem, focusing on hub indexing. Experiments showed that creating hub

indexes is reasonably fast, the indexes are compact, and they can be used to quickly �nd shortest

distances at search time.

For future work, we are considering the following directions.

� We plan to continue to enhance our indexing algorithms. In particular, we are investigating

improved techniques for selecting hubs, especially when we can determine certain properties

of the input graph. In addition, we plan to further investigate techniques for compressing

K-neighborhoods on disk. If we could pre-compute all K-neighborhoods (rather than just

the \hub-bordered" neighborhoods), we could dramatically improve query time. Without

compression, however, the space requirements of such a structure would be enormous.

� The Boolean operators and, or, and not provide additional
exibility to IR searches. We

plan to extend our basic proximity search to support these notions as well. Consider again

our motivating example \Find movie Near Travolta Cage." Suppose a user really only wants

movies near Travolta and near Cage. Currently, our proximity search treats all Near objects

uniformly. Hence, if there were many \Travolta" objects but only one \Cage" object, a

proximity query might highly rank a movie near all of the \Travolta" objects, even if it is

not near the \Cage" object. Implementing a logical and requires either more sophisticated

scoring functions or schemes for combining results from multiple proximity searches.

� To enable many applications, we want to integrate proximity search into structured query

languages such as SQL. In the relational setting, we anticipate several interesting issues

involved in combining traditional relations with ranked tuples that may be returned by the

proximity search. Support for ranked tuples was broached by Fagin [Fag96], who suggests

using fuzzy sets.

� Recent research into searching the Web has looked into ranking a page based on other pages

that link to it [PBMW98]. By treating the Web as our \database," we plan to investigate the

applicability of using proximity search to enhance Web searches. For example, pages \near"

popular directory services like Yahoo may indicate higher relevance.

Acknowledgements

We are grateful to Vineet Gossain and Jason McHugh for their helpful comments. We also thank

Broadbase Information Systems for providing their relational database engine.

20

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, MA, 1974.

[AKR] A. Agrawal, P. Klein, and R. Ravi. Cutting down on �ll using nested dissection: provably

good elimination orderings. In J. A. George, J. R. Gilbert, and J. Liu, editors, Sparse Matrix

Computations: Graph Theory Issues and Algorithms, IMA Volumes in Mathematics and its

applications, pages 31{55. Springer-Verlag, New York.

[Bod93] H. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1{21, 1993.

[Bod96] H. Bodlaender. A linear-time algorithm for �nding tree-decompositions of small tree-width.
SIAM Journal on Computing, 25(6):1305{1317, Dec 1996.

[Con97] World Wide Web Consortium. Extensible markup language (XML). http://www.w3.org/
TR/WD-xml-lang-970331.html, December 1997. Proposed recommendation.

[CZ95] S. Chaudhuri and C. Zaroliagis. Shortest paths in digraphs of small treewidth. In Z. Fulop, ed-
itor, Proc. Int. Conference on Automata, Languages and Programming, pages 244{255, Szeged,

Hungary, July 1995.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1:269{271, 1959.

[DM97] S. DeBloch and N. Mattos. Integrating SQL databases with content-speci�c search engines. In
Proceedings of the Twenty-Third International Conference on Very Large Data Bases, 1997.

[DR94] Shaul Dar and Raghu Ramakrishnan. A performance study of transitive closure algorithms. In
Proceedings of SIGMOD, pages 454{465, May 1994.

[Fag96] R. Fagin. Combining fuzzy information from multiple systems. In Proceedings of the Fifteenth

Symposium on Principles of Database Systems, pages 216{226, Montreal, Canada, June 1996.

[Flo62] R. W. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM, 5(6):345, 1962.

[Goo61] I. J. Good. A causal calculus. British Journal of the Philosophy of Science, 11:305{318, 1961.

[HKRS94] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. In 26th Annual ACM Symposium on Theory of Computing, Montreal, Quebec. Canada,
May 1994.

[KS] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems
in external memory. Algorithmica. Submitted.

[LT80] R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM Journal on

Computing, 9(3):615{627, 1980.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database management

system for semistructured data. SIGMOD Record, 26(3), September 1997.

[Ora97] Oracle Corp. Managing text with Oracle8 ConText cartridge. http://www.oracle.com/st/

o8collateral/html/xctx5bwp.html, 1997. White paper.

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order
to the web. In Submitted to the 21st Annual ACM/SIGIR International Conference on Research

and Development in Information Retrieval, Melbourne, Australia, August 1998.

[Pel97] D. Peleg. Proximity-preserving labelling schemes. Manuscript, 1997.

21

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous
information sources. In Proceedings of the Eleventh International Conference on Data Engineer-

ing, pages 251{260, Taipei, Taiwan, March 1995.

[RS86] N. Robertsona and P. Seymour. Graph minors II: Algorithmic aspects of treewidth. J. of

Algorithms, 7:309{322, 1986.

[Sal89] Gerard Salton. Automatic Text Processing: The transformation, analysis, and retrieval of in-

formation by computer. Addison-Wesley, 1989.

[Ull89] J. Ullman. Principles of Database and Knowledge-base systems, Volume II. Computer Science
Press, Rockville, Maryland, 1989.

[ZMSD93] Justin Zobel, Alistair Mo�at, and Ron Sacks-Davis. Searching large lexicons for partially spec-
i�ed terms using compressed inverted �les. In Proceedings of the Nineteenth International Con-

ference on Very Large Data Bases, pages 290{301, 1993.

9 Appendix

9.1 Additional Query Results

Figure 4 in Section 4 qualitatively describes the results of keyword searches over the Stanford

Database Group database. Figure 12 describes some search results over the 1997 subset of the

Internet Movie Database, a relational source. The edge weights used for this database correspond

directly to those shown in Figure 3.

9.2 SQL for Self-Join

Each self-join iteration in Figure 5 is implemented using sorts and scans. This operation is open

to other implementations, and in fact given El, we can generate El+1 using SQL. Assume that all

tables have three columns: oid1, oid2, and dist. The following code shows how to go from E 1

to E 2; it could be parameterized and embedded within the outer loop (Step [1]) to compute the

entire Dist table.

insert into E_2

select new_oid1, new_oid2, min(new_dist)

from

(select t1.oid2 as new_oid1, t2.oid2 as new_oid2, (t1.dist + t2.dist) as new_dist

from E_1 t1, E_1 t2

where (t1.oid1 = t2.oid1) and (t1.dist + t2.dist <= 2) and (t1.oid2 <> t2.oid2)

union

select oid1 as new_oid1, oid2 as new_oid2, dist as new_dist

from E_1)

group by new_oid1, new_oid2

22

Find movie Near Colorado All movies filmed in Colorado listed first, followed by all
movies that shared workers with the Colorado movies.

All actors who played some kind of policeman in
movies, followed by their costars

Find actor Near policeman

Find movie Near policeman The top movie has three policeman roles, followed
by a movie with two, followed by all movies with one

Find love Near comedy The movie title "Addicted to Love" is first, then keyword
"young-love," describing the comedy "Adam and Eva"

The top movie was filmed at 17 different locations,
followed by a movie with 11, then one with 10, etc.

Find movie Near location

Figure 12: Summary of Internet Movie Database keyword searches

9.3 Correctness of Hub Indexing

In this section, we establish the correctness of the hub indexing algorithms. For simplicity let

\Algorithm n" refer to \the algorithm in Figure n."

We start with a property of the basic self-join procedure, which leaves its output in Dist.

Lemma 9.1

d(u; v) = k � K , hu; v; ki 2 Dist

Proof: Trivial. Follows by induction on k. 2

Let Dist be the structure created by the new, \hub-version" of Algorithm 5, and let Hubs be

the matrix generated on engine initialization as described in Section 5.3.1. Let H be the hub set

obtained.

Lemma 9.2 Dist and Hubs have the following properties:

1. If either u or v =2 H, then hu; v; ki 2 Dist) d(u; v) � k. Equality holds if none of the

vertices on the shortest path from u to v are in H.

2. If u; v 2 H, then d(u; v) =Hubs [u][v]

Proof: Consider the point at which Algorithm 5 completes. It is easy to show (by induction on the number

of vertices in a path) that for any pair of vertices u; v, the inequality in (1) holds. Notice that if there are

no hub vertices on the shortest path from u to v, the new Step [60] is equivalent to the original Step [6] of

the basic self-join procedure, and equality follows from Lemma 9.1.

For u; v 2 H, set d0(u; v) = k, where hu; v; ki 2 Dist (if no such k exists, set d0(u; v) = 1). From the

above remarks, we have d0(u; v) = d(u; v), because there can be no intermediate hub vertices on the path from

u to v (otherwise this entry would never have been created { see Step [60] of Algorithm 5). E�ectively, we

have short-circuited the paths between hub vertices: the application of Floyd-Warshall's algorithm ensures

that the entries in Hubs[u][v] are computed correctly. 2

23

Lemma 9.3 For u; v 2 V , if d(u; v) = k � K, then one of the following must hold

(a) hu; v; ki 2 Dist

(b) 9s1; s2 2 H such that

� d(u; s1) + d(s1; s2) + d(s2; v) = k

� fhu; s1; d(u; s1)i; hs2; v; d(s2; v)ig � Dist

Proof: As in Lemma 9.2, if there are no hub vertices on the shortest path between u and v, (a) follows

from Lemma 9.1. Else, let s1; s2 be the closest hub vertices to u; v respectively on the shortest path from

u to v. As before, hu; s1; d(u; s1)i 2 Dist, as does hs2; v; d(s1; v)i. Since this is a shortest path, d(u; v) =

d(u; s1) + d(s1; s2) + d(s2; v). 2

Theorem 9.1 Let u; v be the vertices presented to Algorithm 7 and let dA be the output of the

algorithm. Then dA = d(u; v).

Proof: Any dA returned by the algorithm also de�nes an implicit path PA(u; v) between u; v which has

the general form u � s1 � s2 � v, where s1; s2 2 H. Note that s1 may be identical to s2, or the u � v path

may not contain any s 2 S.

1. dA � d(u;v) If PA(u; v) contains no s 2 S, then from Step [13] hv; u; dAi 2 Dist. From Lemma 9.2,

dA � d(u; v). Else, there exist some s1; s2 2 S on PA(u; v). Hence, from Step [16] (or Step [60], if s1 = s2),

dA = k1+Hubs[s1][s2] + k2, where fhu; s1; k1i; hs2; v; k2ig � Dist. By Lemma 9.2, dA � d(u; s1) + d(s1; s2) +

d(s2; v) � d(u; v).

2. dA � d(u;v) Consider the two cases in Lemma 9.3. If hu; v; d(u; v)i 2 Dist, then the algorithm will

set dA = d(u; v) in Step [13]. Else, if the second case holds, then the appropriate s1; s2 will be found in Steps

[14]-[16] (or in Steps [4]-[60]), and the algorithm will set dA = d(u; s1) + d(s2; v)+Hubs[s1][s2] = d(u; v). 2

24

